Die Zukunft der Kohle

Präsentation der Kohlestudie: "Kohle versus Klimaschutz?"

Rhein-Ruhr Power: Das Kraftwerk der Zukunft, 9. Mitgliederversammlung des Rhein-Ruhr Power e.V., Moers, 17. November 2015

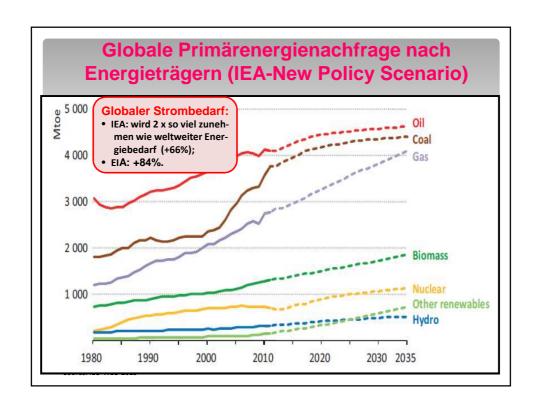
Dr. Frank Umbach

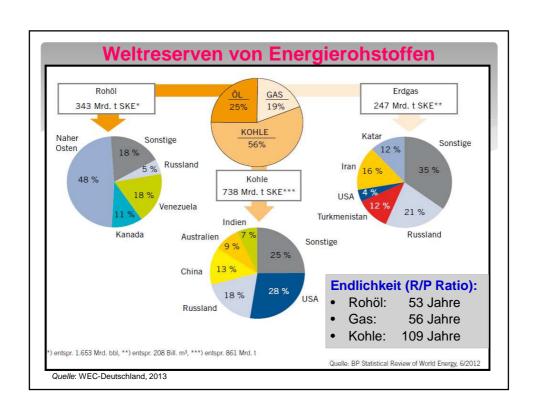
Forschungsdirektor bei EUCERS (London); Senior Associate, CESS GmbH (München) & Senior Fellow, U.S. Atlantic Council (Washington D.C.)

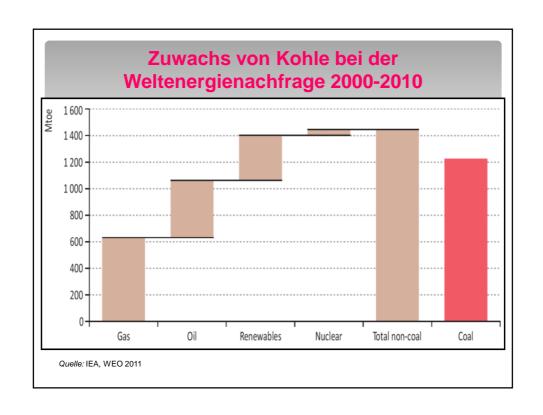
E-Mail: FraUmbach@AOL.COM

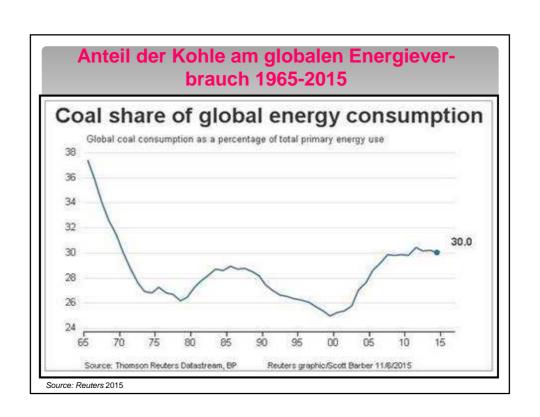
Politische Aktualität, Erkenntnisinteresse und Leitfragen der Studie I

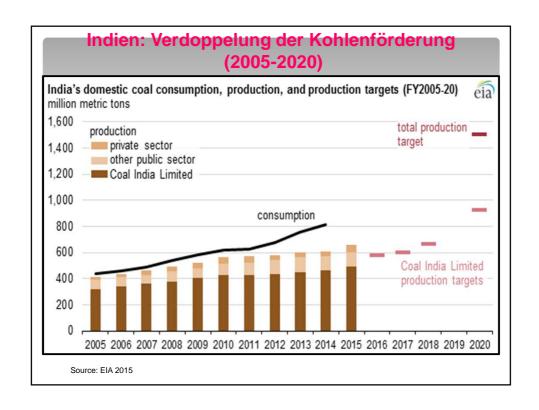
Politische Aktualität: Divestment-Bewegung gegen Kohle versus globaler Verbrauch

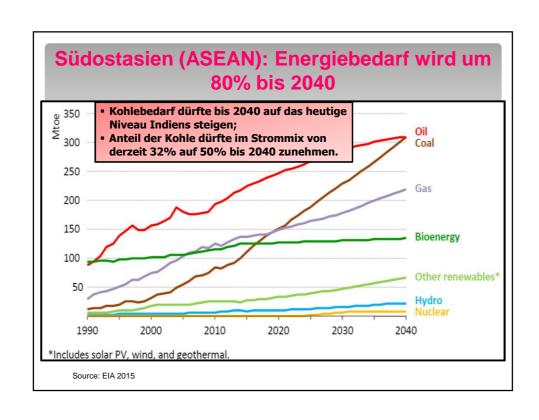

- Kohle zur Energieerzeugung aufgrund internationalem Klimaschutz vor globalen Klimagipfel in Paris im Dezember in zunehmender Kritik.
- Internationale Energiemärkte: Kohle ist weltweit kostengünstig und steht langfristig zur vielfachen Verwendung auch zukünftig zur Verfügung;
- D, F, USA und internat. Entwicklungsbanken: verkündeten Verbote und Restriktio-nen von Exportkredithilfen für saubere Kohlekraftwerkstechnologien (clean coal technologies);
- Zunehmende Klimaschutzforderungen nach einem deutschen und europäischem Kohleausstieg;
- Strategische Trends auf den globalen Energiemärkten
 - auf dem Weg in eine kohlefreie Welt?;
 - Keine Relevanz für D und EU?

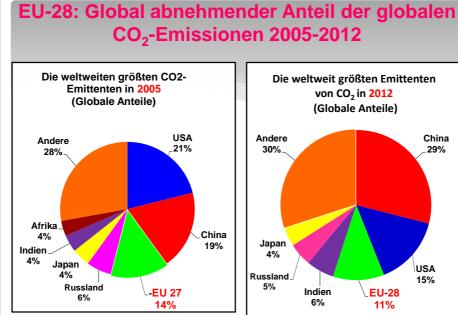

Politische Aktualität, Erkenntnisinteresse und Leitfragen der Studie II

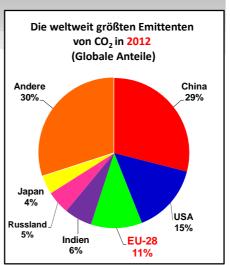

- Divestment-Strategien bei künftigen Kohle-Projekten in USA und Europa:
 - Einstellung staatlicher Kredithilfen (USA, F, D, skandinav. Länder etc.)?;
 - World Bank, Asian Development Bank (ADB), European Investment Bank und European Bank for Reconstruction and Development (EBRD) gegen neue Kredithilfen, außer in "seltenen Ausnahmefällen";
 - Westliche Stiftungen, Städte, Universitäten, Kirchen gegen neue Kohleprojekte, stattdessen größere Bemühungen für Umweltschutz und Ausbau der EE;
 - Unterstützung von immer mehr internationalen Investoren, die inzwischen rund US\$2,6 Bill. US-Dollar an Total Assets kontrollieren.
- Zweifache zunehmende Polarisierung der internationalen Debatte um die Zukunft der Kohle versus Klimaschutz:
 - Zwischen Klima- und vielen internationalen Energieexperten bezüglich eines schnellen Kohleausstiegs;
 - Zwischen westlichen Regierungen und vielen Entwicklungsländern (vor allem in Asien).

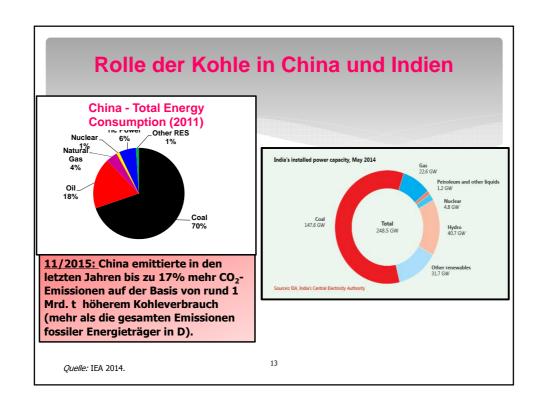

Politische Aktualität, Erkenntnisinteresse und Leitfragen der Studie II


- Klimaschutz-Krise in D:
 - Seit spätestens 2014 war die geplante Emissionsreduzierung bis 2020 nicht mehr realistisch;
 - Neuer Klimaschutzaktionsplan Ende 2014, mit dem die zunehmende Kluft von 5-8% gegenüber dem Reduzierungsziel von 40% bei THGE bis 2020 (gegenüber 1990) geschlossen werden soll:
 - Im Kraftwerkssektor sollen rund ein Drittel oder weitere 22% von Emissionen bis 2020 verringert werden;
 - weitere acht Kohlekraftwerke könnten bis dahin vom Netz gehen;
 - könnte zum schrittweisen Ausstieg auch aus der Kohleförderung und des Betriebs von Kohlekraftwerken führen, welches in einem neuen Energiegesetz bis zum Sommer oder Herbst 2015 kodifiziert und angenommen würde.;
 - doch gleichzeitig verneinte das BMWi einen Plan zur Schließung veralteter Kohlekraftwerke, da die zu reduzierenden 22 Mio. t von insgesamt 431 Mio. t CO₂-Emissionen pro Jahr keine Schließung erfordern würden.

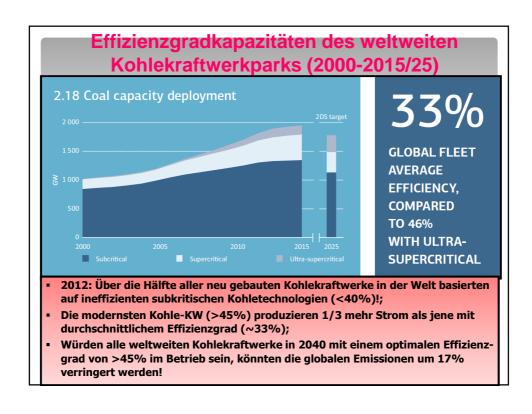


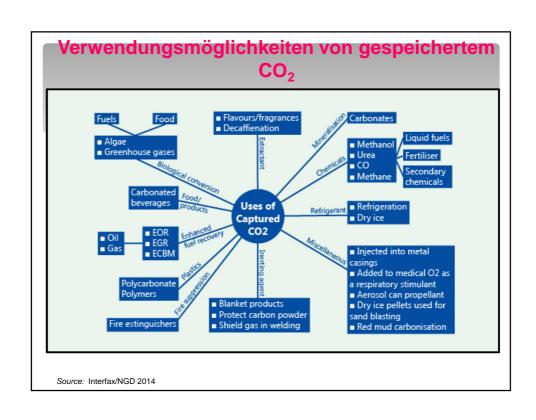


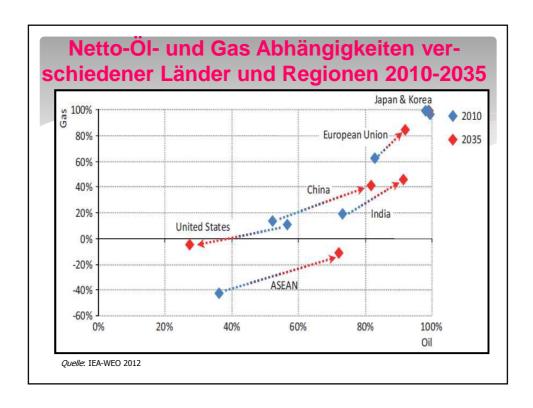


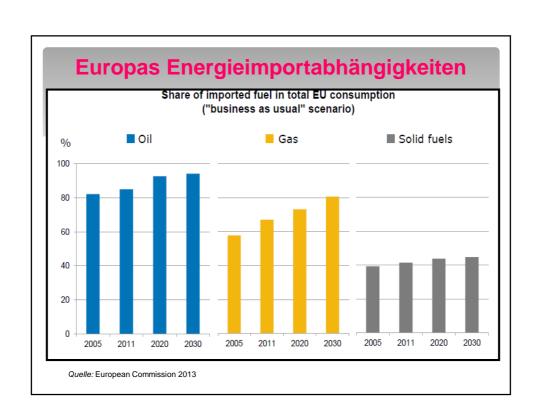

Der deutsche Klimaökonom Ottmar Edenhofer in einer neuen Studie zu "Treibern der Renaissance von Kohle" vom Juli 2015:

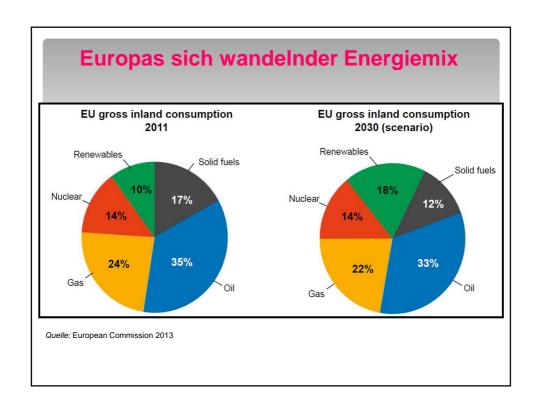
- Ergebnis: "die Renaissance der Kohle findet nicht nur in China und Indien statt, sondern in einer Vielzahl von Entwicklungsländern - besonders in den armen, schnell wachsenden Ländern vor allem in Asien - als Folge von (relativ) geringen Kohlepreisen".
- Schlussfolgerung: "es werden realisierbare Alternativen zu billiger Kohle benötigt, um die Teilnahme der Entwicklungsländer bei der Abschwächung des Klimawandels zu gewährleisten".

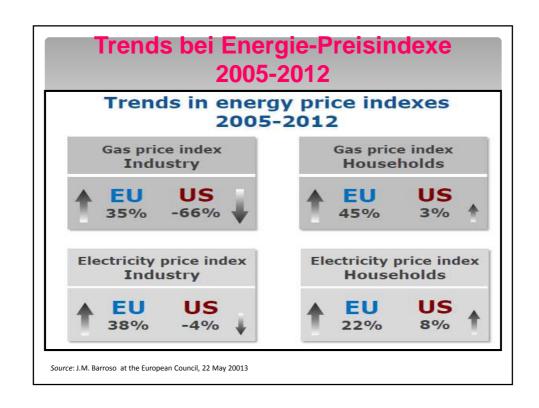


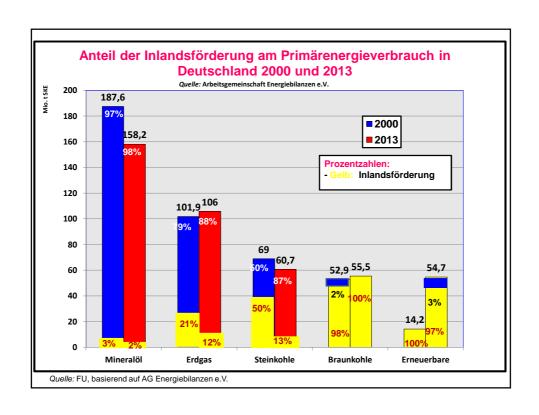


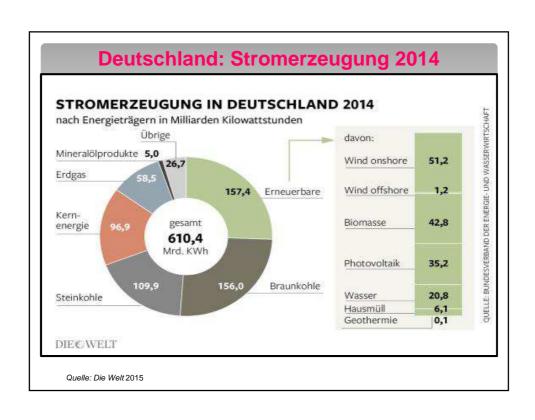

Sources: Dr. Frank Umbach based on European Commission, Joint Research Center.

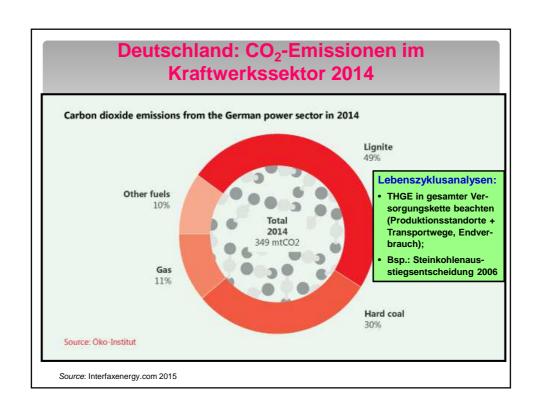














Strategische Bedeutung der Kohle für die deutsche Chemie-Industrie

- ➤ Enquete-Kommission des Landtags von Nordrhein-Westfalen (04/2015):
 - Kohlechemie bietet innovative wirtschaftliche Perspektiven für Abbaureviere und eine verbesserte Klimabilanz von Kohle, da die Hälfte des Kohlenstoffs in Produkten gebunden wäre;
 - Abhängigkeit vieler Produktionsprozesse von importiertem Erdöl könnte vermindert werden:
 - > Kohlenchemie ließe sich auch mit EE und Wasserstoffprozessen koppeln;
 - In China und Indien existieren Chemieanlagen auf Steinkohlenbasis, die bei einem Ölpreis von 70 € pro Barrel und einem Steinkohlepreis von 50 € pro Tonne Steinkohleeinheit wirtschaftlich betrieben werden können;
 - ➤ Studien veranschlagen die Förderkosten der Braunkohle auf 10 bis 20 € je Tonne (in Steinkohleeinheiten umgerechnet sind dies 20 bis 40 € je Tonne). Damit läge die Braunkohle als Einsatzstoff der chemischen Industrie rein rechnerisch in einem wirtschaftlich realistischen Bereich;
 - Chemische Industrie in D verwendet derzeit 8,6 Mio. t Olefine, die sie sie zu Kunststoffen (Ethylen, Propylen) weiterverarbeitet. Dafür werden als Rohstoff heute 15 Mio.t Erdöl pro Jahr eingesetzt dies entspricht eigem energetischem Äquivalent von 71 Mio. Tonnen Braunkohle.

Ergebnisse der Studie I

- "Energietrilemma": Gleichgewicht zwischen Versorgungssicherheit, Umwelt-/Klimaschutz und Wettbewerbsfähigkeit muss gewahrt werden;
- ➤ Kohle hat nicht nur strategische Bedeutung für Energiesektor, sondern ist auch Grundstoff in der Chemie-Industrie u.a.;
- > Herausforderungen des globalen Klimaschutzes:
 - Pragmatische Lösungen statt unilaterale Alleingänge notwendig:
 - Lösungen notwendig auch für bestehenden Kraftwerkspark (wie z.B. weltweite Kohlekraftwerke) notwendig: Modernisierung und Effizienzsteigerungen als aktiver Beitrag zum globalen Klimaschutz;
 - Beachtung von "Carbon Leakage-Effekten" (nur Verlagerung von THGE ins Ausland):
 - > Bsp. Ausstieg aus heimischer Steinkohlenförderung in 2006;
 - > Brennstoffwechsel von Kohle zu Gas: USA als Vorbild?
 - > Carbon Leakage: Reduzierung nationaler THGE, aber Zunahme globaler THGE.
 - ➤ Entscheidend: weltweite Kohleentwicklung und künftigen THGE vor allem in USA, China und Indien und vielen anderen Entwicklungsländern (vor allem in Asien);
- Europa: zusätzliche nationale Minderungen haben keinen Einfluss auf europäische Höchstmenge, da deutsche Emissionsreduzierungen Teil des Bilanzraums Europas sind.

Ergebnisse der Studie II

- Kohleausstieg (kurzfristig) abgewendet?
 - Kapazitätsabbau von 2.7 GW (13% der deutschen Braunkohle-Kapazitäten) bei RWE, Vattenfall und Mibrag und Überführung in eine strategische Reserve bis zur endgültigen Schließung in 2020;
 - ➤ Soll die CO₂-Emissionen um bis zu 12.5 Mio. t verringern;
 - Kritik an "teurer Abwrackprämie" von 1,6 Mrd. Euro; (Versorgungssicherheit kostet aber Geld; Subventionen bei EE belaufen sich in 2016 auf rund 23 Mrd. Euro mit Ökostrom-Umlage auf neuem Rekordniveau);
- Folge westlicher Exportverbote und Exportrestriktionen von sauberen Kohlekraftwerkstechnologien: Anstieg von (Chinas) Exporten von weniger kostspieligen Kohlekraftwerken und –technologien mit geringeren Effizienzgraden global höhere THGE.
- Kohleexportkreditfinanzierung in USA und F: soll nur noch in Ausnahmefällen und unter Voraussetzung der CCS/CCUS-Technologienutzung erfolgen;

27

Ergebnisse der Studie III

- "Deutschland Exportmöglichkeiten für saubere Kohlekraftwerkeund –technologien (CCTs):
 - Förderung der EE prioritär in Entwicklungsfinanzierung;
 - In Partnerländern der Entwicklungspolitik sollen künftig keinerlei Neubauten von Kohlekraftwerken sowie auch keine Ertüchtigung bereits stillgelegter Kohlekraftwerke mehr unterstützt werden;
 - Einsatz modernster und effizientester Technologien in der internationalen Kohlefinanzierung prinzipiell nur in Ausnahmefällen und unter Voraussetzung zahlreicher Bedingungen möglich - wie:
 - ➤ Länder müssen über eine nationale Klimaschutzpolitik- und -strategie verfügen;
 - ➤ In Partnerländern dürfen keine ausreichenden Alternativen im Bereich der EE zur Verfügung stehen und deren Mehrkosten können nicht gedeckt werden können;
 - Vorhaben müssen einen "signifikanten Beitrag zur Energieversorgungssicherheit" leisten und besseren Zugang zu Energie für ärmere Bevölkerungsteile gewährleisten;
 - ➤ Die besten Technologien müssen genutzt werden und späteren Einsatz von CCS ermöglichen (Anlagen mit Blockgrößen von >500 MW: Wirkungsgrad bei Braunkohle-KW: >43% und Steinkohle-KW: >44%)

Ergebnisse der Studie IV

> EU-28/Europa:

- 2013: Kohle sichert 18% des PEV und 27% der Stromerzeugung;
- gegenüber USA ohne Kohle kurz- und mittelfristig kaum konkurrenz-fähig, da die Kohlepreise sich mehr als verdoppeln müssten, damit Gas Kohle im Kraftwerkssektor ersetzen könnte;
- Beibehaltung der Kohle auf einem niedrigeren Niveau in einem breiten EU-Energiemix sichert Konkurrenz im Brennstoffmix als wirksamer Schutz gegen Preismacht und Risiken oligopolistischer Strukturen in der Gasversorgung Europas.
- Ausstieg aus Kohle könnte nicht nur Kohleindustrie, sondern vollständige Wertschöpfungsketten bis hin zum integrierten Fertigungssektor betreffen;
- Deutsche Energiewende ist keine Blaupause für Europa und die Welt, da sie zwei parallele, hochsubventionierte Energiesysteme schafft;

Saubere Kohletechnologien (CCTs) und CCS/CCUS:

- > bleiben entscheidend für Klimastrategien und weltweiten Klimaschutz;
- Müssen nicht nur bei Kohle-, sondern auch bei Gas-, Öl-befeuerten Kraftwerken sowie der gesamten Energie-intensiven Wirtschaft eingeführt werden (sollen rund 20% der bis 2050 zu reduzierenden THGE gewährleisten – Alternative?);
- > Technologieführerschaft bei CCTs liegt noch in Europa;
- Ohne Modernisierung und Effizienzsteigerung des bestehenden globalen Kohlekraftwerksparks durch europäische, westliche Technologiefirmen sind ambitionierte globale Klimaziele noch unrealistischer.

29

Vielen Dank für die Aufmerksamkeit!