

Following projects and further aspects and synergies

Prof. Dr.-Ing. Klaus Görner

Head of Environmental Process Engineering and Plant Design University of Duisburg-Essen

Flexible power plants for the Energiewende 5th March 2015, Brussels

www.rhein-ruhr-power.net

Power plant of the future

Total net load vs. power production by renewables

Starting points for power plant flexibilization

Rhein Ruhr

Rhein Ruhr

Power

Concrete RRP projects

for the second

Synergy 1: **Power plant of the future is capture ready**

- <u>Capture readyness</u> of a power plant makes a today investment more attractive
- Opportunity to achieve high CO₂ reduction goals
- CO₂ capture is a proven technology and ready for the market
 - RWE plant in Niederaußem, NRW
 - Uni Duisburg-Essen plant in steag coal fired power plant in Lünen, NRW
 - E.ON coal fired PP in Maasvlakte, NL is capture ready
- CO₂ capture in combination with power plant gives additional <u>flexibility options</u> in operation
 - Capture rate can be varried between 0 and 90 %
- Excess power from power generation and captured CO₂ are the basis for <u>further products</u>
 - Power-to-Gas P2G
 - Power-to-Fuels P2F

www.rhein-ruhr-power.net

- Power-to-Chemicals P2C

Rhein Ruhr

5

Synergy 1: CCU / P2X contribute to new markets

Flexible power plants for the Energiewende - 5th March 2015, Brussels - Prof. Görner, Uni Duisburg-Essen

Synergy 2: CHP is the basis for an attractive heat market

- Combined heat and power is a prooven technology to <u>reduce CO₂</u> in relation to a separated generation of heat and power
- NRW is a concentrated urban and industrial area with a very dense <u>district heating</u> <u>infrastructure</u>
- This infrastructure will be enlarged and interconnected in the Ruhr area.
- New gas and steam power plants with heat extraction in <u>Düsseldorf</u> and <u>Cologne</u> contribute to the increase the power production by CHP in this area
- By these measures NRW becomes a <u>model</u> region for CHP in Europe

Flexible power plants for the Energiewende - 5th March 2015, Brussels - Prof. Görner, Uni Duisburg-Essen

Challenges for future markets

- Flexible fossile based power plants are the <u>back bone</u> for a
 - stable

www.rhein-ruhr-power.net

- economic and
- environmental friendly

power supply

- New power plants are necessary for this task
- These must be prepared for future markets:
 - extremely flexible, very low partial load, high load transients
 - cheaper in the specific investment costs
 - smaller in the absolute capacity
 - capture ready
 - heat extraction possibility for CHP applications
- <u>The power plant of the future</u> is able to be the reference for the global market

Perspectives for Europe and global markets

- Regional projects are one cornerstone for the future European energy system
- Products from NRW / Germany / Europe are able to contribute to reduce the CO₂ emissions significantly
- NRW as one of the leading energy regions in Europe has a very good basis for being the technology leader in this context
- RRP Rhein Ruhr Power concentrates necessary competences:
 - technological ones
 - economical ones
 - structural ones

to be successful in the future global market

Thank very much

kind attention

Contact:

Prof. Dr.-Ing. Klaus Görner

Institute for Environmental Process Engineering and Plant Design University of Duisburg-Essen Leimkugelstraße 10 | 45141 Essen, Germany

Tel. +49 201 / 183-7511 | E-Mail: klaus. goerner@uni-due.de